<u>ПЛАН – КОНСПЕКТ</u> УРОКА АЛГЕБРЫ в 10 КЛАССЕ

Учитель: Смотрина Т. Ю.

TEMA: «Семь способов решения тригонометрического уравнения $\frac{\sin x - \cos x = 1}{\sin x}$ »

Цель:

> Добиться осознанного усвоения алгоритмов решения тригонометрических уравнений.

Задачи:

- Повторить формулы нахождения корней простейших тригонометрических уравнений, частные случаи решения тригонометрических уравнений и алгоритм вычисления значений тригонометрических функций.
- Продолжить рассмотрение основных приемов решения тригонометрических уравнений. \square
- Изучить алгоритмы решения простейших тригонометрических уравнений.
- Исследовать решения простейших тригонометрических уравнений аналитическим методом и с помощью единичной окружности.

ТЕХНОЛОГИЯ ИЗУЧЕНИЯ ТЕМЫ

Этап І: Самоопределение к деятельности

Форма работы: фронтальная

Метод обучения: информационно - рецептивный

<u>Педагогические приёмы</u>: проверка уровня знаний, решение познавательных задач, системные обобщения, самопроверка, лови ошибку, найди лишнее, установи соответствие, экспресс – опрос.

<u>Оборудование:</u> экран, мультимедийный проектор, ноутбук, конспект лекций, лист учета знаний, бланк для записи ответов, раздаточный дифференцированный материал, слайд - лекция "Методы решения уравнений".

Цели

- ▶ Актуализировать имеющиеся знания по нахождению значений тригонометрических функций, корней простейших тригонометрических уравнений и частных случаев решения тригонометрических уравнений.
- > Мотивировать обучающихся к изучению темы.

Ситуативное задание

Учитель

Для осознанного восприятия новой темы рассмотрим следующие вопросы, используя учебную презентацию.

(работа проводится в двух вариантах; вопросы проецируются на экран слайд 3, 4) (http://karmanform.ucoz.ru/trig_ur.rar)

Задание 1

Вариант 1.	Вариант 2.
1. Каково будет решение уравнения cos x = a при a > 1	1. Каково будет решение уравнения $\sin x = a$ при $a > 1$
2. При каком значении о уравнение cos x = a имеет решение?	2. При каком значении а уравнение sin x = a имеет решение?
3. Какой формулой выражается это решение?	3. Какой формулой выражается это решение?
4. На какой оси откладывается значение а при решении уравнения cos x = a?	4. На какой оси откладывается значение а при решении уравнения sin x = a ?

Вариант 1.	Вариант 2.
5. В каком промежутке	5. В каком промежутке
находится arccos a ?	находится arcsin a ?
6. В каком промежутке находится значение а?	6. В каком промежутке находится значение а?
7. Каким будет решение	7. Каким будет решение
уравнения cos x = 1?	уравнения sin x = 1?
8. Каким будет решение	8. Каким будет решение
уравнения cos x = -1?	уравнения sin x = -1?

Вариант 1.	Вариант 2.
9. Каким будет решение уравнения cos x = 0?	9. Каким будет решение уравнения sin x = 0?
10. Чему равняется arccos (- a)?	10. Чему равняется arcsin (- a)?
11. В каком промежутке находится arctg a?	11. В каком промежутке находится arcctg a?
12. Какой формулой выражается решение уравнения tg x = a?	12. Какой формулой выражается решение уравнения ctg x = a?

N⁰	Вариант 1.	Вариант 2.
1.	Нет решения	Нет решения
2.	a ≤ 1	a ≤ 1
3 .	$x = \pm \arccos a + 2\pi n, \ n \in \mathbb{Z}$	$x = (-1)^n \arcsin a + \pi k, \ k \in \mathbb{Z}$
4.	На оси Ох	На оси Оу
5 ·	[0; π]	[- π / 2; π /2]
6.	[-1; 1]	[-1; 1]
<i>7</i> -	$x=2\pi n, n\in \mathbb{Z}$	$x = \pi / 2 + 2\pi k, \ k \in \mathbb{Z}$
8.	$x = \pi + 2\pi n, \qquad n \in Z$	$x = -\pi/2 + 2\pi k, \ k \in Z$
9.	$x = \pi / 2 + \pi n, \ n \in \mathbb{Z}$	$x = \pi k, k \in \mathbb{Z}$
10.	$n-\arccos a$	-arcsin a
11.	$(-\pi/2; \pi/2)$	(0; π)
12.	$x = arctg a + \pi n, \ n \in \mathbb{Z}$	$x = arcctg \ a + \pi k, \ k \in \mathbb{Z}$

(учащиеся отмечают количество правильных ответов, заносят в лист учета знаний)

Задание 2

Найдите ошибки (слайд7)

$$\arcsin 45^0 = \frac{\sqrt{2}}{2}$$
 (Не определено)

$$\arccos\left(-\frac{1}{2}\right) = -\frac{\pi}{3}$$
 $\left(\frac{2\pi}{3}\right)$

$$\arcsin 3 = \arcsin 1 \cdot 3 = \frac{\pi}{4} \cdot 3 = \frac{3\pi}{4} \qquad (He \ cyweemsymm)$$

$$arctg 1 = arctg \frac{\pi}{4}$$
 $\left(\frac{\pi}{4}\right)$

$$arcctg\left(-\sqrt{3}\right) = -\frac{\pi}{6} \qquad \left(\frac{3\pi}{4}\right)$$

Найди ошибку.

$$2 \quad \arccos\left(-\frac{1}{2}\right) = \boxed{\frac{2\pi}{3}}$$

$$4 \quad arctg \ 1 = \boxed{\frac{\pi}{4}}$$

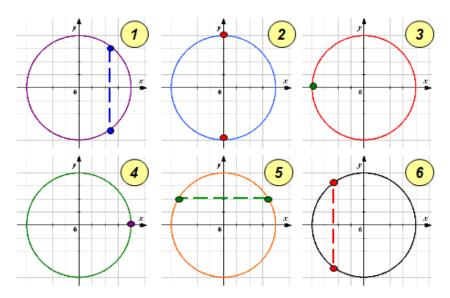
$$\mathbf{5} \quad arcctg\left(-\sqrt{3}\right) = \frac{3\pi}{4}$$

(учащиеся отмечают количество правильных ответов, заносят в лист учета знаний)

Задание 3

На слайдах вы видите схемы решений тригонометрических уравнений. Как вы думаете, какая из схем представленной группы является лишней? Что объединяет остальные схемы? (слайд 8, 9)

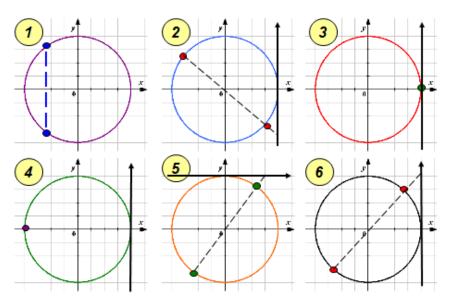
Какая из схем лишняя?



Ответы

<u>Слайд 8</u> 5-я схема лишняя, так как эта схема изображает решение уравнения вида $\sin x = a$; 1, 2, 3, 4, 6- изображают решение уравнений вида $\cos x = a$.

Какие из схем лишние?



Ответы

<u>Слайд</u> 9 1-я схема лишняя, так как она изображает решение уравнения вида $\cos x = a$; 5-я схема лишняя, так как эта схема изображает решение уравнения вида $\cot x = a$;

2, 3, 4, 6 – изображают решение уравнений вида tg x = a.

(учащиеся отмечают количество правильных ответов, заносят в лист учета знаний)

Задание 4

Учитель

Установите соответствие:

$$3 \quad sin x = 1$$

$$\boxed{5} \qquad tg \ x = 1$$

$$6 \quad sin x = -1$$

$$7$$
 $cos x = 0$

$$\frac{\pi}{2} + 2\pi k, \ k \in Z$$

$$2\pi k, k \in Z$$

$$\pi k, k \in Z$$

$$\frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}$$

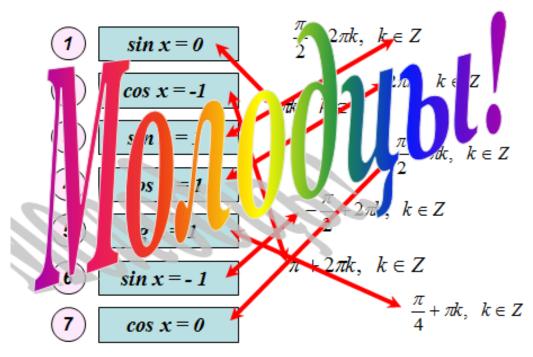
$$-\frac{\pi}{2} + 2\pi k, \ k \in \mathbb{Z}$$

$$\pi + 2\pi k, k \in \mathbb{Z}$$

$$\frac{\pi}{4} + \pi k, \quad k \in \mathbb{Z}$$

<u>Ответы</u> (слайд 11)

Установите соответствие:

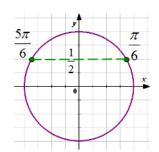


(учащиеся отмечают количество правильных ответов, заносят в лист учета знаний)

Определите, решение какого тригонометрического уравнения показано на единичной окружности. Запишите его корни (слайд 12, 13, 14, 15).

Ответы

1. Решение какого уравнения показано на тригонометрической окружности?



$$\sin x = 1/2$$

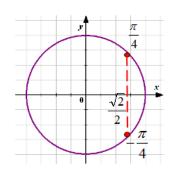
$$x = \frac{\pi}{6} + 2\pi n, \ n \in \mathbb{Z}$$

$$x = \frac{5\pi}{6} + 2\pi n, \ n \in \mathbb{Z}$$

3. Решение какого уравнения показано на тригонометрической окружности?



2. Решение какого уравнения показано на тригонометрической окружности?

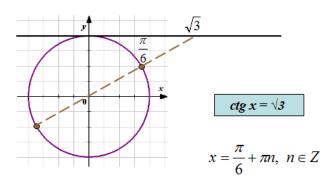


$$\cos x = \sqrt{2/2}$$

$$x = -\frac{\pi}{4} + 2\pi n, \ n \in \mathbb{Z}$$

$$x = \frac{\pi}{4} + 2\pi n, \ n \in \mathbb{Z}$$

4. Решение какого уравнения показано на тригонометрической окружности?



(учащиеся отмечают количество правильных ответов, заносят в лист учета знаний)

Этап II: Учебно-познавательная деятельность

Форма работы: групповая

<u>Методы обучения</u>: репродуктивный (для ребят низкого уровня обученности), проблемное изложение (для ребят среднего уровня обученности), частично-поисковый (для ребят хорошего уровня обученности).

<u>Педагогические приёмы</u>: проверка уровня знаний, взаимопроверка, консультанты на уроке, защита проекта.

Цель

ightharpoonup Добиться приобретения навыков решения тригонометрического уравнения $\sin x - \cos x = 1$.

Учитель

Проблема красоты привлекала и привлекает величайшие умы человечества. Математики видят её в гармонии чисел и форм, геометрической выразительности, стройности математических формул, изяществе математических доказательств, богатстве приложений универсальных математических методов, решении задач различными способами (слайд 16).

Учитель

Но красота математики выражается не только в красоте форм и наглядной выразительности математических объектов. Её привлекательность будет усиливаться за счёт эмоционально-экспрессивных составляющих: оригинальности, неожиданности, изящества. Математики живут ради тех славных моментов, когда проблема оказывается решённой, ради моментов озарения, восторга. Можно ли насладиться решением уравнения $\sin x - \cos x = 1$? Да, если стать его исследователем. Попытаемся найти самый простой (сопряженный с наименьшими усилиями), оригинальный, неожиданный и универсальный способ решения (слайд 17).

<u>Учитель</u>

Самое время продемонстрировать весь арсенал, имеющихся в нашем распоряжении, методов и приёмов решения тригонометрических уравнений

(ребята перечисляют известные приёмы решения тригонометрических уравнений (слайд 18))

Учитель

Мы говорим о богатстве приложений универсальных математических методов. При решении уравнений одним из них является метод разложения на множители. Можно ли применить его к решению уравнения $\sin x - \cos x = 1$?

Hа первый взгляд, кажется что нет ...A если использовать специфические тригонометрические преобразования?

Задание 1 группе (для ребят низкого уровня обученности)

1 шаг

Подготовьте тригонометрическое уравнение к разложению на множители, для этого используйте формулу повышения степени $1 + \cos x = 2 \cos^2 \frac{x}{2}$ и формулу двойного аргумента

$$\sin 2 * \frac{x}{2} = 2 \sin \frac{x}{2} \cos \frac{x}{2}$$

2 шат

Разложите левую часть уравнения на множители, для этого вынесите за скобку общий множитель $\cos \frac{x}{2}$.

<u>3 шаг</u>

Рассмотрите совокупность уравнений $\begin{bmatrix} \cos\frac{x}{2}=0,\\ \sin\frac{x}{2}-\cos\frac{x}{2}=0. \end{bmatrix}$ и найдите корни каждого уравнения.

4 шаг

Представьте проект решения на доске.

Задание 2 группе (для ребят низкого уровня обученности)

1 шаг

 $\overline{\text{Pазложите левую часть уравнения по формулам двойного аргумента } \sin 2 * \frac{x}{2} = 2 \sin \frac{x}{2} \cos \frac{x}{2}$ $\cos 2 * \frac{x}{2} = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$,

а правую часть замените тригонометрической единицей $\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} = 1$.

2 шаг

Выполните необходимые преобразования и разложите левую часть уравнения на множители, для этого вынесите за скобку общий множитель $\cos \frac{x}{2}$.

3 шаг

Рассмотрите совокупность уравнений $\begin{bmatrix} \cos \frac{x}{2} = 0, \\ \sin \frac{x}{2} - \cos \frac{x}{2} = 0. \end{bmatrix}$ и найдите корни каждого уравнения.

4 шаг

Представьте проект решения на доске.

Учитель

Тригонометрия удивительна тем, что она дает собственные оригинальные способы преобразование разности (или суммы) тригонометрических функций в произведение:

$$\sin x - \sin y = 2\sin\frac{x-y}{2}\cos\frac{x+y}{2};$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

Но увы в левой части уравнения, мы видим разноименные функции. Как изменить название функции на «кофункцию»? Есть изящный способ.

Задание 3 группе (для ребят среднего уровня обученности)

1 шаг

Примените формулу приведения для функции $\cos x$, заменив её на $\sin \left(\frac{\pi}{2} - x\right)$.

2 шаг

Используйте формулу разности двух синусов.

3 шаг

Выполните необходимые преобразования и найдите корни уравнения.

<u>4 шаг</u>

Представьте проект решения на доске.

Учитель

Великий математик, физик и политик А. Энштейн заметил: «Мне приходиться делить время между политикой и уравнениями. Однако уравнения гораздо важнее. Политика существует только для данного момента, а уравнения будут сушествовать вечно».

Научимся бороться с трудностями при решении уравнений, сможем преодолевать любые жизненные препятствия.

Задание 4 группе (для ребят хорошего уровня обученности)

1 шаг

Выразите из основного тригонометрического тождества $\sin x$ и подставьте полученное выражение в исходное уравнение.

2 шаг

Подготовьте внешний вид уравнения к возведению в квадрат.

<u>3 шаг</u>

После всех преобразований, рассмотрите совокупность двух уравнений $\cos x = 0$, $\cos x = -1$.

4 шаг

Обязательно выполните проверку, исключите посторонние корни.

5 mar

Представьте проект решения на доске.

Учитель

Хочу предложить вам рассмотреть ещё один способ, связанный с нестандартным преобразованием тригонометрического уравнения — возведением обеих частей в квадрат. И хотя он является коварным в плане приобретения посторонних корней, но подкупает своим оригинальным способом сведения исходного уравнения к простейшему.

Задание 5 группе (для ребят хорошего уровня обученности)

1шаг

Возведите обе части уравнения в квадрат, применяя в левой части уравнения формулу квадрата разности двух выражений.

2 шаг

Преобразуйте левую часть уравнения, используя формулу двойного аргумента и основное тригонометрическое тождество.

3 шаг

Решите простейшее тригонометрическое уравнение $\sin 2x = 0$.

4 шаг

Обязательно выполните проверку, исключите посторонние корни.

5 шаг

Представьте проект решения на доске.

Учитель

Рассмотрим ещё один метод — частный случай метода введения новой переменной. Он в принципе, применим к любым уравнениям вида $R(\sin x, \cos x) = 0$, где R — символ некоторого рационального выражения. Основан этот метод на следующих рассуждениях.

$$E$$
слих $\neq \pi + 2\pi n, n \in Z$, то справедливы следующие тождества: $\cos x = \frac{1 - tg^{\frac{2x}{2}}}{1 + tg^{\frac{2x}{2}}}; \sin x = \frac{2 tg^{\frac{x}{2}}}{1 + tg^{\frac{2x}{2}}}$

Задание 6 группе (для ребят высокого уровня обученности)

1 шаг

Воспользуйтесь предложенными тождествами.

2 шаг

Введите новую переменную $U = tg^{\frac{x}{2}}$.

3 шаг

Решите рациональное уравнение.

4 шаг.

Найдите корни простейшего тригонометрического уравнения tg = 1

<u>5 шаг.</u>

Проверьте, не являются ли числа вида $x = \pi + 2\pi n$, $n \in \mathbb{Z}$ решениями заданного уравнения.

<u>6 шаг</u>

Представьте проект решения на доске.

Представление проектов

<u>1 rpynna</u>

Проект решения уравнения $\sin x - \cos x = 1$

$$\sin x - \cos x = 1 \le \sin x - (1 + \cos x) = 0.$$

Перейдем к половинному аргументу, применив формулу повышения степени

$$1+\cos x=2\cos^2\frac{x}{2}$$
 и формулу двойного аргумента $\sin 2*\frac{x}{2}=2\sin\frac{x}{2}\cos\frac{x}{2}$. Имеем $2\sin\frac{x}{2}\cos\frac{x}{2}-2\cos^2\frac{x}{2}=0$;

$$\cos \frac{x}{2} \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right) = 0 < = > \begin{bmatrix} \cos \frac{x}{2} = 0, \\ \sin \frac{x}{2} - \cos \frac{x}{2} = 0. \end{bmatrix}$$

Рассмотрим второе уравнение системы $\sin \frac{x}{2} - \cos \frac{x}{2} = 0$ - это однородное уравнение первой степени.

Делим обе его части на $\cos \frac{x}{2} \neq 0$, получим $tg \frac{x}{2} - 1 = 0$;

$$tg\frac{x}{2}=1;$$

$$\frac{x}{2} = \frac{\pi}{4} + \pi k, k \ni Z;$$

$$x = \frac{\pi}{2} + 2\pi k, k \in Z.$$

Тогда совокупность уравнений
$$\begin{bmatrix}\cos\frac{x}{2}=0,\\ \sin\frac{x}{2}-\cos\frac{x}{2}=0\end{bmatrix}<=>\begin{bmatrix}x=\pi+2\pi n,\ n\in Z,\\ x=\frac{\pi}{2}+2\pi k,\ k\in Z.$$

Ответ: $\frac{\pi}{2} + 2\pi k$; $\pi + 2\pi n$; $n, k \in \mathbb{Z}$.

2 группа

Проект решения уравнения $\sin x - \cos x = 1$

Разложим левую часть уравнения по формулам двойного аргумента

 $\sin 2*\frac{x}{2}=2\sin\frac{x}{2}\cdot\cos\frac{x}{2}$ и $\cos 2*\frac{x}{2}=\cos^2\frac{x}{2}-\sin^2\frac{x}{2}$, а правую часть заменим тригонометрической единицей.

Имеем,
$$2\sin\frac{x}{2}\cdot\cos\frac{x}{2} - \cos^2\frac{x}{2} + \sin^2\frac{x}{2} = \sin^2\frac{x}{2} + \cos^2\frac{x}{2};$$

 $2\sin\frac{x}{2}\cdot\cos\frac{x}{2} - 2\cos^2\frac{x}{2} = 0;$

$$\cos\frac{x}{2} \cdot \left(\sin\frac{x}{2} - \cos\frac{x}{2}\right) = 0 <=> \begin{bmatrix} \cos\frac{x}{2} = 0, \\ \sin\frac{x}{2} - \cos\frac{x}{2} = 0 \end{bmatrix} <=> \begin{bmatrix} x = \pi + 2\pi n, \ n \in Z, \\ x = \frac{\pi}{2} + 2\pi k, \ k \in Z. \end{bmatrix}$$

Ответ: $\frac{\pi}{2} + 2\pi k$; $\pi + 2\pi n$; $n, k \in \mathbb{Z}$.

3 группа

Проект решения уравнения $\sin x - \cos x = 1$

Воспользуемся формулой приведения для функции $\cos x$ и запишем уравнение в виде $\sin x - \cos \left(\frac{\pi}{2} - x\right) = 1$

Используя формулу разности двух синусов $\sin x - \sin y = 2 \sin \frac{x-y}{2} \cdot \cos \frac{x+y}{2}$, получим $2 \sin \frac{2x-\frac{\pi}{2}}{2} \cdot \cos \frac{\frac{\pi}{2}}{2} = 1$;

$$2\sin(x-\frac{\pi}{4})\cdot\cos\frac{\pi}{4}=1;$$

$$2\sin\left(x-\frac{\pi}{4}\right)\cdot\frac{\sqrt{2}}{2}=1;$$

$$\sin(x-\frac{\pi}{4})=\frac{1}{\sqrt{2}}\;;$$

$$\sin\left(x-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2};$$

$$\begin{split} x - \frac{\pi}{4} &= (-1)^n \cdot \arcsin \frac{\sqrt{2}}{2} + \pi n, n \in Z; \\ x &= \frac{\pi}{4} + (-1)^n \cdot \frac{\pi}{4} + \ \pi n, \ n \in Z; \\ \text{Othet:} \frac{\pi}{4} + (-1)^n \cdot \frac{\pi}{4} + \ \pi n, \ n \in Z. \end{split}$$

4 *zpynna*

Проект решения уравнения $\sin x - \cos x = 1$

Выразим из основного тригонометрического тождества sin x

$$\sin^2 x + \cos^2 x = 1$$
;
 $\sin x = \pm \sqrt{1 - \cos^2 x}$;
 Уравнение $\sin x - \cos x = 1$ $<=> \pm \sqrt{1 - \cos^2 x} - \cos x = 1$;
 $+\sqrt{1 - \cos^2 x} = 1 + \cos x$:

Возведем обе части полученного уравнения в квадрат

Возведем оос части полученного уравнения в квадрат
$$1-\cos^2 x = 1 + 2\cos x + \cos^2 x\,;$$

$$2\cos^2 x + 2\cos x = 0\,;$$

$$\cos x \cdot (\cos x + 1) = 0 \quad <=> \begin{bmatrix} \cos x = 0 \,, \\ \cos x = -1 \end{bmatrix} <=> \begin{bmatrix} x = \frac{\pi}{2} + \pi k, & k \in Z, \\ x = \pi + 2\pi n, & n \in Z. \end{bmatrix}$$

В процессе решения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому обязательна проверка. Полученные решения эквивалентны

объединению трёх решений:
$$\begin{bmatrix} x=\frac{\pi}{2}+2\pi k, & k\in Z,\\ x=\pi+2\pi n, & n\in Z,\\ x=-\frac{\pi}{2}+2\pi l, & l\in Z. \end{bmatrix}$$

Первое и второе решения совпадают с ранее полученными, поэтому не являются посторонними. Проверим $x=-\frac{\pi}{2}+2\pi l, l\in Z$

$$\sin\left(-\frac{\pi}{2} + 2\pi l\right) - \cos\left(-\frac{\pi}{2} + 2\pi l\right) = 1;$$
$$\sin\left(-\frac{\pi}{2}\right) - \cos\left(-\frac{\pi}{2}\right) = 1;$$

$$-1 - 0 = 1$$
:

 $-1 \neq 1$, следовательно $x = -\frac{\pi}{2} + 2\pi l, l \in \mathbb{Z}$ - постороннее решение.

Ответ:
$$\frac{\pi}{2} + 2\pi k$$
; $\pi + 2\pi n$; $n, k \in \mathbb{Z}$.

5 rpynna

Проект решения уравнения $\sin x - \cos x = 1$

Возведем обе части уравнения в квадрат $(\sin x - \cos x)^2 = 1^2$. Применив формулу квадрата разности двух выражений, получим уравнение $\sin^2 x - 2\sin x \cos x + \cos^2 x = 1$. Воспользуемся формулой двойного аргумента и основным тригонометрическим тождеством, тогда левая часть $1-\sin 2x=1;$ уравнения примет вид:

 $\sin 2x = 0;$

$$2x = \pi k, k \in Z$$
;

$$x = \frac{\pi}{2}k$$
, $k \in Z$.

$$x = 2\pi m, m \in \mathbb{Z},$$

$$x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$$

$$x = \pi + 2\pi n, n \in \mathbb{Z},$$

$$x = -\frac{\pi}{2} + 2\pi l, l \in \mathbb{Z}$$

Второе и третье решения совпадают с ранее полученными, поэтому не является посторонними.

Проверим
$$x = -\frac{\pi}{2} + 2\pi l, l \in Z$$

$$\sin\left(-\frac{\pi}{2} + 2\pi l\right) - \cos\left(-\frac{\pi}{2} + 2\pi l\right) = 1;$$

$$\sin\left(-\frac{\pi}{2}\right) - \cos\left(-\frac{\pi}{2}\right) = 1;$$

$$-1 - 0 = 1$$
;

 $-1 \neq 1$, следовательно $x = -\frac{\pi}{2} + 2\pi l, l \in Z$ - постороннее решение.

Проверим $x = 2\pi m, m \in Z$

 $\sin 2\pi m - \cos 2\pi m = 1$

$$\sin 2\pi - \cos 2\pi = 1;$$

$$0-1=1$$
;

-1 ≠ 1, следовательно $x = 2\pi m$, $m \in Z - постороннее решение.$

Ответ:
$$\frac{\pi}{2} + 2\pi k$$
; $\pi + 2\pi n$; $n, k \in \mathbb{Z}$.

6 группа

Проект решения уравнения $\sin x - \cos x = 1$

Если $x \neq \pi + 2\pi n$, то справедливы следующие тождества:

$$\cos x = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}}; \sin x = \frac{2 tg \frac{x}{2}}{1 + tg^2 \frac{x}{2}}$$

Выразим sin x и cos x по этим формулам и приведём уравнение к виду:

$$\frac{2 \operatorname{tg}^{\frac{x}{2}}}{1 + \operatorname{tg}^{2}^{\frac{x}{2}}} - \frac{1 - \operatorname{tg}^{2}^{\frac{x}{2}}}{1 + \operatorname{tg}^{2}^{\frac{x}{2}}} = 1$$

Воспользуемся универсальной подставкой $U = tg^{\frac{x}{2}}$ и рассмотрим рациональное уравнение

$$\frac{2U}{1+U^2} - \frac{1-U^2}{1+U^2} = 1 < > \frac{2U-1+U^2-1-U^2}{1+U^2} = 0 < > 2U=0 \quad u \quad 1+U^2 \neq 0$$

Из уравнения 2 tg $\frac{x}{2} = 2$ <=> $tg \frac{x}{2} = 1$ находим $\frac{x}{2} = \frac{\pi}{4} + \pi k$;

$$x \,=\, \frac{\pi}{2} + 2\pi k, \qquad k \in Z.$$

Поскольку использование универсальной подстановки возможно лишь при $\mathbf{x} \neq \pi + 2\pi \mathbf{n}$, нужно всегда проверять, не являются ли числа вида $\mathbf{x} = \pi + 2\pi \mathbf{n}$ решением заданного уравнения $\sin(\pi + 2\pi \mathbf{n}) - \cos(\pi + 2\pi \mathbf{n}) = \mathbf{1}$;

 $\sin \pi - \cos \pi = 1$

$$0 - (-1) = 1$$
:

1 = 1.

Проверка показывает, что значения $x = \pi + 2\pi n$ являются решением уравнения.

Otbet:
$$\frac{\pi}{2} + 2\pi k$$
; $\pi + 2\pi n$; $k, n \in \mathbb{Z}$.

<u>Учител</u>ь

Наряду с универсальными методами решения уравнений, есть и специфические. Наиболее ярким из них является метод введения вспомогательного угла (числа). Благодаря этому приёму исходное уравнение легко сводится к простейшему — просто и красиво!

Рассмотрим уравнение.

$$\sin x - \cos x = 1$$

Введем вспомогательное число $\sqrt{2} * \frac{\sqrt{2}}{2}$

$$\sqrt{2} * \sin x * \frac{\sqrt{2}}{2} - \sqrt{2} \cos x * \frac{\sqrt{2}}{2} = 1,$$

В левой части уравнения вынесем $\sqrt{2}$ за скобку

$$\sqrt{2} * \left(\sin x * \frac{\sqrt{2}}{2} - \cos x * \frac{\sqrt{2}}{2}\right) = 1$$

Введем вспомогательный угол $\frac{\pi}{4}$

$$\sqrt{2} * \left(\sin x * \cos \frac{\pi}{4} - \cos x * \sin \frac{\pi}{4} \right) = 1,$$

Используя формулу синуса разности аргументов, приведем уравнение к виду

$$\sqrt{2} * \left(\sin\left(x - \frac{\pi}{4}\right)\right) = 1$$
 $\ll > \sin\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

$$\mathbf{x} - \frac{\pi}{4} = (-1)^n \arcsin \frac{\sqrt{2}}{2} + \pi n, n \epsilon \mathbf{Z}$$

$$x = \frac{\pi}{4} + (-1)^n \frac{\pi}{4} + \pi n, n \in Z$$

Ответ:
$$\frac{\pi}{4} + (-1)^n \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$$
.

Этап III: Диагностика качества освоения темы

Форма работы: (в паре)

Методы обучения: проблемное изложение

<u>Педагогические приёмы</u>: проверка уровня знаний, взаимопроверка, консультанты на уроке.

Цель

Установить степень усвоения темы «Семь способов решения тригонометрического уравнения $\sin x - \cos x = 1$ ».

Учитель

Одно уравнение — семь способов решения, две серии углов. Сопоставьте корни уравнений 2-ой и 3-ей групп. Убедитесь, что хотя полученные ответы выглядят по разному, они описывают одно и то же числовое множество (работа в парах).

$x = \frac{\pi}{4} + (-1)^n \times \frac{\pi}{4} + \pi n, n \in Z$ Если n = -3, то $x = -3\pi$

<u>Учитель</u>

Всё! Точнее почти всё! Осталось выбрать способ решения, победивший в номинациях (каждый учащийся заполняет анкету, консультанты обрабатывают результаты).

Номинация	№ Способа		
«Неожиданность»			
«Простота»			
«Озарение»			
«Изящество»			
«Оригинальность»			
«Универсальность»			
«Восторг»			

Результаты голосования:

Номинация	№ Способа	
«Неожиданность»	1 способ	
«Простота»	2 способ	
«Озарение»	3 способ	
«Изящество»	4 способ	
«Оригинальность»	5 способ	
«Универсальность»	6 способ	
«Восторг»	7 способ	

Этап IV: Интеллектуально-преобразовательная деятельность

Форма работы: индивидуальная

<u>Методы обучения:</u> частично-поисковый, исследовательский

<u>Педагогические приёмы</u>: проверка уровня знаний, взаимопроверка, консультанты на уроке, представление проекта.

Цели

Стимулировать интерес обучающихся к выполнению заданий частично-поискового и эвристического характера.

- **>** Научить школьников:
- ориентироваться в разных вариантах выполнения задания;
- планировать свои действия в соответствии с учебным заданием, представлять результат своей деятельности.

Учитель

Данный модуль представляет собой задание, состоящее из трёх уровней.

Уровень 1

 $\cos^2 x \cdot 5\sin x - 3 = 0$

Уровень 2

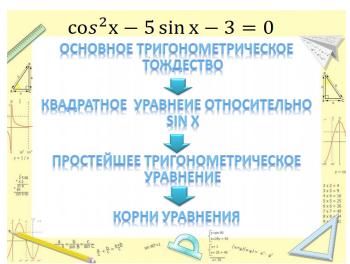
 $5\sin^2 x - 8\sin x \cos x - \cos^2 x = -2$

Уровень 3

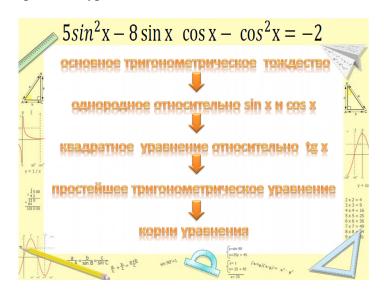
 $\sin x + \cos x = 1$

Вы вправе выбрать любой один и сконструировать алгоритм его решения (учитель организует участие ребят в выполнении отдельных этапов поиска, а учащиеся осуществляют его самостоятельно). По окончании работы представьте проект у доски.

Проект решения уравнения $\cos^2 x - 5\sin x - 3 = 0$



Проект решения уравнения $\frac{5\sin^2 x - 8\sin x \cos x - \cos^2 x = -2}{\cos^2 x \cos^2 x}$



Проект решения уравнения sin x + cos x = 1

Этап V: Рефлексивная деятельность

Форма работы: (индивидуальная)

Цели

- Научить школьников:
- соотносить полученный результат с поставленной целью;
- оценивать результат своей деятельности;
- оценивать результат учебной деятельности.

Самоанализ и самооценка ученика

Рефлексию деятельности можно провести, используя метод незаконченных предложений. Ребята по очереди высказываются одним предложением, выбирая начало фразы из рефлексивного экрана на доске.

Сегодня я узнал	••••	 	
Было интересно			
Было трудно			
Я выполнял задания			
Я понял, что		 	
Теперь я могу			
Я почувствовал, что			
Я приобрел			
Я научился			
У меня получилось			
Я смог			
Я попробую			
Меня удивило			
Урок дал мне для жизни			

Делается вывод урока.

Домашнее задание: